文章编号: 0258-7025(2009)01-0249-06

飞秒激光双光子制造生物微器件微支架

狄建科 周 明 杨海峰 孔俊杰 戴 娟 (江苏大学光子制造中心,江苏 镇江 212013)

摘要 介绍了飞秒激光双光子吸收和光聚合的机制,将飞秒激光技术应用于生物相容性材料(ORMOCER)的三维 微纳米加工中。在 ORMOCER 材料内实现了双光子光聚合,最高加工精度达到 0.5 μm,突破了衍射极限。推导出 双光子光聚合阈值的数学表达式,研究了扫描速度 V 和激光功率 P 对横向尺寸的影响规律。在此基础上采用飞秒 激光双光子微细加工技术制备了典型的微生物器件——微井阵列、微柱阵列和光子晶体生物微型支架。 关键词 激光技术;飞秒激光;微加工;双光子聚合;微生物器件 中图分类号 TN 249 文献标识码 A doi: 10.3788/CJL20093601.0249

Manufacturing Micro-Biological Device and Scaffold Research with Two-Photon Femtosecond Laser Technology

Di Jianke Zhou Ming Yang Haifeng Kong Junjie Dai Juan

(Center of Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

Abstract This paper reports the mechanism of two-photon absorption photopolymerization and the femtosecond laser technology used for biocompatible materials ORMOCER three-dimensional micro-nano processing. Two-photon absorption photopolymerization was achieved in ORMOCER resin, the resolution reached 0.5 μ m less than the diffraction limitation. The mathematical expression of two photon photopolymerization threshold is derived, the effect of the scanning speed V and the laser power P on the transverse size is studied. Using two-photon femtosecond laser micro-processing technology fabricates a typical microbial devices such as micro-well array, micro-pole-array, and photonic crystal micro-biological scaffold.

Key words laser technique; femtosecond laser; micromachining; two photon polymerization; microbial device

1 引 言

啁啾脉冲放大技术能将单个脉冲能量从几个纳 焦耳放大至几百毫焦耳甚至焦耳级,使得飞秒激光 的峰值功率得以大幅度提高^[1,2]。采用光直接从原 子中剥离电子成为可能,从根本上改变了光与物质 的作用框架,使得激光与原子、分子、离子、自由电 子、团簇以及等离子体的相互作用研究进入到一个 高度非线性的场强范围。在几乎所有材料中价电子 均可通过非线性机制电离,如多光子电离和雪崩电 离,从而导致材料的永久改变。飞秒激光加工改变 了激光与物质相互作用的机制,不但可以提高加工 精度,而且还能加工长脉冲激光无能为力的透明材 料,开创了激光加工的崭新领域^[3,4]。

生物医用材料展现出诱人的应用前景,用飞秒 激光作用于生物微器件加工制作技术得到广泛的关 注。利用飞秒激光超快时间分辨、超强峰值功率和 超高空间局域的特点及飞秒激光在微纳加工中体现 出的优越性,提出一种新型的实现组织工程细胞支 架快速仿生制造的新方法——飞秒激光非线性快速 制造技术。这种加工方法将快速扫描技术和非线性 三维加工技术高度集成,实现对细胞支架的快速制 造,具有传统的组织工程细胞支架制作方法无法比

作者简介:狄建科(1983-),男,硕士研究生,主要从事飞秒激光微加工研究。E-mail:keca_1983@163.com

导师简介:周 明(1972—),男,教授,博士生导师,主要从事激光微加工、飞秒激光与生物细胞作用机制等的研究。 E-mail:zm2109@126.com(通信作者)

收稿日期:2008-03-03; 收到修改稿日期:2008-05-14

基金项目:国家 863 计划(2006AA04Z307),教育部新世纪优秀人才支持计划,国家自然科学基金面上项目(50775104)和 江苏省优秀创新人才基金(BK2006507)资助课题。

拟的优点和特点。它的研究和发展,将对组织工程的研究,特别是对高性能细胞支架的快速制作具有 重要意义,并将强有力地推动生命科学和生物技术 的发展^[5~8]。本文主要介绍用飞秒激光双光子微细 加工技术制备典型的微生物器件——微井阵列、微 柱阵列和光子晶体生物微型支架等结构。

2 原 理

飞秒激光的超强特性使其能以极低的脉冲能量 获得超强光场,并且激光辐照区淀积的能量难以通 过热扩散途径逸出辐照区域。与透明物质相互作用 是通过双光子或多光子吸收过程实现,而作用区域 仅限于焦点核心很小体积内,因而在三维微制备领 域有着独特的优势^[9,10]。

将一紧密聚焦的飞秒激光束照射于液态透明高 分子聚合材料内部,并使激光能量稍高于双光子光 聚合阈值,则可使得激光在到达位于焦点中心区域 的材料时,主要进行的是双光子非线性吸收,从而在 该局部区域诱发高聚物体内共价键断裂以产生自由 基。而自由基又会触发光聚合反应的发生,在液体 内部发生双光子光聚合,即产生出近似球体的固体 颗粒。通过焦点光斑在高聚物内部的连续扫描,可 使这些固体颗粒彼此相互联结,从而构成线、面及三 维立体结构。

双光子光聚合分为两个过程:双光子吸收和光 聚合。双光子吸收是指在强光激发下,介质分子同 时吸收两个光子,从基态跃迁到两倍光子能量的激 发态过程^[11]。光聚合是利用光化学方法产生自由 基或离子引发单体发生的聚合。普通的光聚合材料 均采用光敏引发聚合。首先光敏剂吸收光子跃迁到 激发态,在激发态的光敏剂与引发剂之间发生能量 转移或电子转换,由引发剂产生活性自由基或离子, 再由这些活性粒子引发单体聚合。这些过程涉及光 物理、光化学和热化学反应^[12]。

双光子聚合的核心部分是双光子聚合的光敏引 发体系,直接决定双光子聚合技术的引发效率和应 用^[13]。与单光子吸收相比,双光子光聚合在工作机 制上的区别主要是引发剂的激发方式,自由基产生 后,聚合反应的情况将主要取决于自由基的浓度及 分布、引发聚合的效率等材料因素^[14]。双光子微细 加工过程中,通过改变加工参量可以实现曝光点自 由基浓度的控制^[15]。自由基的激发状况直接影响 着聚合反应的引发及增长过程,从而影响光聚合的 阈值和体积元的尺寸。因此,可以从自由基的角度 入手,分析光聚合反应发生的条件,即探讨光聚合发 生时的自由基浓度临界值。假定自由基的浓度按 $\rho = \rho(r,z,t)$ 的规律分布,当某处的自由基浓度 ρ 超过了材料所要求的最小浓度(临界值) ρ_{th} 时,该处 的聚合反应就可以被引发。飞秒激光诱发双光子光 聚合时所需的激发光强阈值 $I_{th} = \rho_{th}$ 的关系为^[16]

$$I_{\rm th} = \sqrt{\frac{(h\nu)^2}{\sigma_2 t} \ln \frac{\rho_0}{\rho_0 - \rho_{\rm th}}}, \qquad (1)$$

式中, h_v 为光子能量, σ_2 为光敏树脂的有效双光子 吸收截面, ρ_0 为光引发剂在材料中的初始浓度。

因为飞秒激光光束服从高斯分布,采用极坐标, 高斯光束的强度分布为^[17]

$$I(r,\theta,t) = I_0 e^{-2(r/w_0)^2} e^{-4\ln 2(t/\tau)^2}, \qquad (2)$$

式中 I_0 为光束中心的强度, w_0 为焦斑处波束腰的 尺寸, τ 为飞秒激光的脉宽。右边第二项为空间分 布,第三项为时间分布。在时间和空间上对强度积 分,就是光束的总能量 E;结合飞秒激光脉冲的能 量可以由平均功率 P 推导出来,飞秒激光的重复频 率为 f_q ,则单脉冲能量 $E = P/f_q$;再结合高斯分 布,把焦斑处的波束腰 w_0 用聚焦镜的数值孔径来表 示,所以(2)式转换为

$$I_{\text{peak}} = \frac{4 \sqrt{\pi \ln 2}}{\lambda^2} \cdot \frac{P}{\tau \cdot f_{q}} \cdot \left(\frac{\text{NA}^2}{1 - \text{NA}^2}\right), \quad (3)$$

式中 NA 为聚焦物镜的数值孔径, λ 为飞秒激光的 波长,因此,通过调节飞秒激光的波长 λ,脉宽 τ,重 复频率 f_q,平均功率 P 和聚焦物镜的数值孔径 NA 可以改变激光焦点处的峰值强度。由(1)和(3)式可 知,当飞秒激光的峰值光强 I_{peak} 大于或等于 I_{th} 时, 材料通过双光子吸收可以达到所要求的自由基浓 度,从而引发聚合反应。这个范围的液态高聚物最 终被固化,进一步化简即得

$$\frac{P}{hv \cdot \tau \cdot f_{q} \cdot \lambda^{2}} \cdot \left(\frac{\mathrm{NA}^{2}}{1 - \mathrm{NA}^{2}}\right) \cdot t^{1/2} \geqslant \sqrt{\frac{1}{16\pi\sigma_{2}} \mathrm{lb} \frac{\rho_{0}}{\rho_{0} - \rho_{\mathrm{th}}}}$$
(4)

(4)式左边是激光的参量,右边是光敏材料的参量。 当(4)式成立时,光聚合反应就会发生。相反,当 $I_{\text{peak}} < I_{\text{th}}$ 时,激发产生的自由基浓度则不能引发聚 合反应。

3 实 验

3.1 实验材料和装置

图 1 是实验系统示意图,激光器为钛宝石飞秒 激光器,输出激光中心波长为 796 nm,脉宽 28 fs,

251

重复频率 82 MHz,稳定输出功率 560 mW。激光功 率计在物镜入射端对用于微加工的飞秒激光束功率 值进行实际测量,并通过能量衰减器对激光功率进 行调节,光闸用来控制激光束的通断。经过反射镜 后,被聚焦到光敏树脂内;光敏树脂位于玻片表面, 玻片固定在三维移动平台上;计算机发送指令给控 制器,控制器驱动三维移动平台的运动,其精度可达 20 nm。扫描平台在 x, y, z 三个方向的运动范围均 为 30 mm,扫描速度在 20~160 μm/s 之间。采用 CAD 软件设计微器件,转化为控制器可以识别的指 令,再利用计算机的软件控制系统控制三维移动轴 的精密运动和光闸的通断,实现飞秒激光选择性加 工,从而在光敏树脂内制作三维微器件,未曝光的材 料用溶剂溶解,得到所需的固化三维微结构。实验 前,在固定玻片的时候,由于对玻片和聚焦物镜之间 要求非常精确,故在系统中添加 CCD 系统用以检测 玻片和聚焦物镜顶部之间的间隙。

实验所用的双光子吸收材料为生物相容性 ORMOCER 材料,它是一种无机-有机混合聚合物, 其吸收波长介于 $350 \sim 405$ nm 之间,对于 796 nm 的红光是透明的,即 796 nm 的波长通过单光子吸 收是不会诱发光固化的。其折射指数 $n = 1.538 \pm$ 0.001,具备很高的光学透明性和低损耗率,波长为 633 nm 时,损耗率为 0.06 dB/cm,1310 nm 时为 0.23 dB/cm。ORMOCER 本身为液态,曝光之后未 曝光的部分用溶剂溶解,得到所需的固化三维微 结构。

3.2 系统参量实验

当飞秒激光束在液态光敏树脂中进行连续扫描 运动时,双光子光聚合所产生的固体体积元将会相 互联结成线体,而这种线体的尺寸将严格受到上述 光聚合分辨率的影响。为了得到线体的尺寸与各参 量之间的关系,设计了一组实验:研究线宽与激光功 率和扫描速度的关系(扫描速度等效于曝光时间)。 采用数值孔径为1.25的物镜对飞秒激光束进行聚 焦,并将激光功率分别调节为 80 mW,100 mW 和 140 mW 来对液态光敏树脂进行连续扫描。在这三 个不同的激光功率作用下,每次扫描八条直线,每条 直线 所 采 用 的 扫 描 速 度 依 次 为 120 μm/s, 100 μm/s,80 μm/s,60 μm/s,40 μm/s,20 μm/s, 10 µm/s和 2 µm/s。图 2 为三组实验结果绘制的曲 线图。在激光功率不变的情况下,随着扫描速度的 加快,加工线宽也在不断减小。并且当扫描速度在 较低范围内变化时,线宽的变化率也较大;之后随着 扫描速度的进一步提升,线宽的变化越来越缓慢,最 终导致加工线条的断断续续,甚至消失。该现象仍 然可从自由基浓度出发而得到合理的解释,即扫描 速度减慢会使焦斑处的自由基浓度升高,使得固化 区域增大,也即加工线宽变宽。同时还可以看到,随 着激光功率的增大,得到的线宽也相应增加。该现 象是由于自由基浓度与激光功率成正比。当功率上 升时,自由基浓度随之迅速增加的原因所致。然而, 与扫描速度对加工线宽的影响规律颇为相似,后者 也同样不会随着激光功率的连续升高而无限制增 大。当激光功率上升到某一较高值时,液态光敏树 脂会出现烧毁现象。

从实验结果可以知道,在其他条件不变的情况 下,加工线宽随扫描速度的升高而减小,随激光功率 的升高而变大。线宽 d 值随激光功率 P 值的增大 而增大,随曝光时间增大而增大,随扫描速度 V 的 增大而减小。因此,在进行后续的三维微器件的制 作时,应尽量选择较高的扫描速度和较小的激光功 率。在实验室固有的实验条件下,加工出的光滑、连 续的线条最小宽度为 200 nm 左右,突破了激光束 的衍射极限,实现了真正意义上的纳米级微细加工。 综合考虑各种因素的影响,对于本微细加工实验系统,采用 NA=1.25 或 NA=1.35(油镜)的聚焦物镜,加工功率选择 50~120 mW,加工速度选择 60~ 120 μm/s。此时的加工效率高,光固化时缺陷少,加工产品质量高。

4 微结构制作及应用

鉴于双光子光聚合有很多优良的特性,因此将 该技术引入到微加工领域,可使这种新型的微加工 技术表现出很多较传统激光加工所不可比拟的独特 优势。飞秒激光双光子光聚合加工技术可以在材料 上达到单次扫描即可以实现纳米级精度的快速制 造,而且结构的参量也可以任意设置。这样的空间 结构具有一定柔性性能,同时也在支架表面引入了 纳米结构,使得其表面能大大提高,改善了支架的亲 水性和浸润性,有利于细胞的黏附与再生长,这些都 是传统的微结构加工所不具有的优点。生物相容性 材料 ORMOCER 是一种无机-有机混合聚合物,是 通过溶胶-凝胶过程合成的,能够很好地应用到微电 子学和微系统技术中。同时,ORMOCER 也具有很 高的生物相容性和大的双光子吸收截面,因此可以 应用于生物微器件的双光子光聚合制作及在细胞黏 附、迁移等的研究。

4.1 生物器件微井阵列

飞秒激光双光子制造技术应用于具有生物相容

性的 ORMOCER 材料的三维支架制作,可用在组 织工程领域。图 3(a)是制作的微型井结构的示意 图,采用 NA=1.25(油镜)的聚焦物镜,加工功率选 择 110 mW,加工速度选择 100 μ m/s,整个微结构的 尺寸为 100 μ m×100 μ m,共包含了 100 个微型井结 构,每个微格面积为 10 μ m×10 μ m,微格线条由激 光多次扫描获得。中心线宽约 2.0 μ m,格高约 6 μ m。图 3(b)是生物器件微井阵列边缘图示,可知 微井壁是上窄下宽的结构。改变加工参数,可制备 出不同形貌、不同尺寸的微阵列表面。此器件可用 作微型培养皿,用于细胞培养等。

4.2 生物器件微柱阵列

光

细胞置于一个表面具有微结构的基板时,已有 实验证明细胞的黏附、脱附性能会受到此微结构的 影响^[18~22],表面的微结构影响了细胞的附着、伸展、 成长、迁移及增殖等功能。飞秒激光双光子微加工 技术在这方面有着独特的应用,因为它可以制作任 意三维形状的微米和亚微米结构阵列等结构。图 4 是采用飞秒激光在具有生物相容性的材料 ORMOCER上制作的生物器件微柱阵列,采用 NA =1.25(油镜)的聚焦物镜,加工功率选择 80 mW, 加工速度选择 80 μ m/s。在微柱阵列所在的平面 内,两个方向上的柱的紧密程度不同,用以研究微柱 的疏密程度对细胞伸展和迁移的影响。该结构中, 柱高 20 μ m,横向柱周期为 10 μ m,纵向为 5 μ m。它 可应用于细胞的黏附、脱附性能等研究。

图 4 生物器件微柱阵列 Fig. 4 Micro-pole array

4.3 光子晶体微生物支架

飞秒激光双光子制造技术应用于具有生物相容 性的 ORMOCER 材料的三维支架制作,也可用在 细胞工程领域。图 5 是木堆光子晶体支架结构。采 用 NA=1.25(油镜)的聚焦物镜,加工功率选择 100 mW,加工速度选择 80 μ m/s。该生物微型支架 平面杆距为 2 μ m,杆的线宽约 0.5 μ m,一共 4 层, 面积为 40 μ m×40 μ m。该结构可应用于细胞的增 殖及组织的修复等方面的研究,可以加工适当的三 维晶体结构来培养并修复破坏的组织。该研究在国 外已经有初步报道^[23]。

图 5 木堆光子晶体支架 Fig. 5 Optical microscope image of photonic crystal scaffold

5 结 论

利用飞秒激光非线性的优点,采用飞秒激光双 光子加工技术,使得快速制备任意空间结构、孔大小 和孔密度的支架成为可能,为优化和量化立体空间 结构提供了方便快捷的方法;并且飞秒激光双光子 快速多次聚合方法可以实现纳米级精度的快速制 造,在支架表面引人纳米结构使得其表面能大大提 高,改善了支架的亲水性和浸润性,有利于细胞的黏 附与再生长。在搭建了双光子光聚合微细加工实验 系统的基础上,集中讨论了双光子光聚合微细加工实验 系统的基础上,集中讨论了双光子光聚合微细加工 技术在生物微器件领域的一些应用,如生物器件微 井阵列、生物器件微柱阵列和光子晶体生物支架等 结构,这表明飞秒激光双光子光聚合微细加工技术 是一种灵活、快捷、具有广泛应用前景的三维微纳加 工技术。

参考文献

- Jesper Serbin, Aleksandr Ovsianikov, Boris Chichkov. Fabrication of woodpile structures by two — photon polymerization and investigation of their optical properties[J]. Opt. Express ,2004 , 12(21): 5221~5228
- 2 M. Hentschel, R. Kienberger, C. Spielmann et al. Attosecond metrology [J]. Nature, 2001,414:509~513
- Bai Guang. Femtosecond laser application [J]. Laser and Optoelectronics Progress, 2002,39(3):41~44
 白 光. 飞砂激光的应用[J]. 激光与光电子学进展, 2002,39 (3):41~44
- 4 He Fei, Cheng Ya. Femtosecond laser micromachining: Frontier in laser precision micromachining[J]. Chinese J. Lasers, 2007, 34(5): 595~622

何 飞,程 亚.飞秒激光微加工:激光精密加工领域的新前沿 [J]. 中国激光, 2007,**34**(5): 595~622

5 Sun Xiaohui, Zhou Changhe. Fabrication of microoptical

elements with femtosecond laser[J]. Chinese J. Lasers , 2006, $\mathbf{33}(1):\!133\!\sim\!\!137$

- 孙晓慧,周常河. 飞秒激光加工微光学元件的研究[J]. 中国激 光,2006,**33**(1):133~137
- 6 Wu Xiaojun, Jia Tianqing, Zhao Fuli *et al.*. Fabrication of nanostructures on 6H SiC crystal induced by femtosecond laser [J]. Acta Optica Sinica, 2007, 27(1):105~110 吴晓君,贾天卿,赵福利等.飞秒激光在 6H SiC 晶体表面制备 纳米微结构[J]. 光学学报,2007,27(1):105~110
- 7 Chen Hongxin, Jia Tianqing, Huang Min *et al*. Visible infrared femtosecond laser-induced optical breakdown of 6H SiC[J]. *Acta Optica Sinica*, 2006, **26**(3):467~470 陈洪新, 贾天卿, 黄 敏等. 飞秒激光的波长对 SiC 材料烧蚀的 影响[J]. 光学学报,2006, **26**(3):467~470
- 8 Wang Qingyue, Hu Minglie, Chai Lu. Progress in nonlinear optics with protonic crystal fibers [J]. Chinese J. Lasers, 2006, 33(1):57~66
 王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展
- [J]. 中国激光, 2006, 33(1):57~66
 9 Li Yan, Jiang Hongbing, Yang Hong et al. Femtosecond laser transparent material of three-dimensional micro preparation
 [J]. Quantum Electronic Journals, 2004, 21(2):187~193
 李 焱,蒋红兵,杨 宏等.透明材料飞秒激光三维微制备[J].
- 量子电子学报,2004,**21**(2):187~193 10 Sabrina Schlie, Anaclet Ngezahayo, Aleksandr Ovsianikov *et*
- al.. Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique[J].
 J. Biomater Appl., 2007,22:275~287
- 11 W. Kaiser, C. G. Garrett. Two-photon excitation in CaF2: $Eu^{2+}[J]$. Phys. Rev. Lett. ,1961, 7: 229~231
- 12 Wang Tao, Shi Mengquan, Li Xue et al. Two-photon photopolymerization technology and its research progress [J]. Photographic Science and Photochemical, 2003, 21(3): 223 ~ 230

王 涛,施盟泉,李 雪等.双光子光聚合技术及其研究进展 [J]. 感光科学与光化学, 2003,**21**(3):223~230

- 13 S. J. Chung, K. S. Kim, P. N. Prasad *et al.*. Cooperative enhancement of two-photon absorption in multibranched structures [J]. J. Phys. Chem. B, 1999,103:10741~10745
- 14 Mikhail Drobizhev, Aliaksandr Karotki, Yuliya Dzenis et al.. Strong cooperative enhancement of two-photon absorption in dendrimers [J]. J. Phys. Chem. B, 2003, 107:7540~7543
- 15 S. Yokoyama, T. Nakahama, H. Miki *et al.*. Two-photoninduced polymerization in a laser gain medium for optical microstructure [J]. *Appl. Phys. Lett.*, 2003, **82** (19): 3221 ~3223
- 16 Zhou Ming, Liu Lipeng, Dai Qixun *et al.*. Fabrication of microstructures with two-photon absorption induced by femtosecond laser[J]. *Chinese J. Lasers*, 2005, **32**(10):1342~1346
 周 明,刘立鹏,戴起勋等. 飞秒激光双光子微细结构的制备[J]. 中国激光, 2005, **32**(10):1342~1346
- 17 U. Morgner, F. X. Kartner, S. H. Cho *et al.* . Sub-two-cycle pulses from a Kerr-lens mode-locked Ti-sapphire laser[J]. Opt. Lett., 1999,24(6):411~413
- 18 A. C. Duncan, R. F. Weisbuch, F. S. Lazare *et al.*. Laser microfabricated model surfaces for controlled cell growth [J]. *Biosensors and Bioelectronics*, 2002.17(5): 413~426
- 19 Chen G. Ushida, T. Tateishi, T. Scaffold. Design for tissue engineering [J]. Macromolecular Bioscience, 2002, 2(2): 67~77
- 20 T. G. van Kooten, J. F. Whitesides, A. F. von Recum. Influence of silicon (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis [J]. Journal of Biomedical Materials Research, 1998, 43 (1): 1~ 14

- 21 X. F. Walboomers, H. J. E. Croes, L. A. Ginse et al.. Microgrooved subcutaneous implants in the goat [J]. Journal of Biomedical Materials Research, 1998, 42(4): 634~641
- 22 B. Chehroudi, D. McDonnell, D. M. Brunette. The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing [J]. Journal of Biomedical Materials

Research , 1997, 34(3): 279~290

光

23 A. Ovsianikov, A. Ostendorf, B. N. Chichkov. Threedimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine[J]. *Applied Surface Science*, 2007, 253:6599~6602